

Dynamic Whitelist Generation for Automated Response

Chris Strasburg, Josh Adams

Ames Laboratory, US DOE cstras@ameslab.gov, jadams@ameslab.gov

IOWA STATE University

Outline

- Introduction
 - About Ames Laboratory
 - Motivation
- 2 Methodology
 - Data
 - Classifiers
 - Experiments
- Results

Ames Physical Environment

Ames Network Environment

Threats

- Effectiveness of attack tools
- Highly motivated attackers
- Deviation from classical attack sequence

Mitigation

- Near real-time information sharing
- Automated response included in tools

New Risks

- Unintentional Disruption
- Denial of Service

Whitelists:

- Specify site-critical resources
- Prevent automated response block

- Web-filter / Proxy

Whitelist Characteristics

Whitelists:

- Specify site-critical resources
- Prevent automated response block

Challenges

- Environment specific
- Difficult to comprehensively construct
- Evolve over time

- Web-filter / Proxy

Whitelists:

- Specify site-critical resources
- Prevent automated response block

Challenges

- Environment specific
- Difficult to comprehensively construct
- Evolve over time

Examples

- E-Mail Anti-spam Whitelists
- Web-filter / Proxy Whitelists

Other Options

Post-response cost estimation

Goal: Utilize available data to automate whitelist generation.

Whitelist Characteristics

Whitelists:

- Specify site-critical resources
- Prevent automated response block

Challenges

- Environment specific
- Difficult to comprehensively construct
- Evolve over time

Examples

- E-Mail Anti-spam Whitelists
- Web-filter / Proxy Whitelists

Other Options

Post-response cost estimation

Whitelists:

- Specify site-critical resources
- Prevent automated response block

Challenges

- Environment specific
- Difficult to comprehensively construct
- Evolve over time

Examples

- E-Mail Anti-spam Whitelists
- Web-filter / Proxy Whitelists

Other Options

 Post-response cost estimation

Goal: Utilize available data to automate whitelist generation.

Desired Qualities (What makes a good whitelist?)

- Low false positive rate (whitelist an IP erroneously)
- Low false negative rate (fail to whitelist an important IP)
- Real-time classification
- Minimal maintenance
 - Updatable / adaptive
 - Self-generating
 - Intuitive scoring
- Easy to interpret

Dynamic Whitelist Architecture

NetFlow

- ► Tuples of the form (SIP, SP, DIP, DP, Bytes, Proto, Time)
- Processed into aggregate statistics, and normalized
 - Number of flows
 - Number of bytes
 - Time since last visited
 - Peer count

Firewall

- Tuples of the form (SIP, SP, DIP, DP, {allow|block}, Time)
- Processed into aggregate statistics and normalized
 - Number of blocks

(IP, flow	s, datavol,	peercount,	lastseen, bloc	ks)
IP	flows	datavol	peercount	lastseen

aaa.bbb.ccc.ddd	1.85e-07	5.53e-09	0.00e+00	0.359	0
WWW.XXX.VVV.ZZZ	1.85e-07	3.71e-09	0.00e+00	0.711	12

blocks

Cooking Data

NetFlow

- ► Tuples of the form (SIP, SP, DIP, DP, Bytes, Proto, Time)
- Processed into aggregate statistics, and normalized
 - Number of flows
 - Number of bytes
 - Time since last visited
 - Peer count

Firewall

- ► Tuples of the form (SIP, SP, DIP, DP, {allow|block}, Time)
- Processed into aggregate statistics, and normalized
 - Number of blocks

(IP, flov	vs, datavo	ol, peercount	, lastseen, blo	ocks)
IP	flows	datavol	peercount	lastseen

**			p		
aaa.bbb.ccc.ddd	1.85e-07	5.53e-09	0.00e+00	0.359	0
WWW.XXX.VVV.ZZZ	1.85e-07	3.71e-09	0.00e+00	0.711	12

blocks

Data Summary

- Collected one month of NetFlow data: 1,677,720 IP addresses.
- Of those, 5,571 were categorized according to our groups.

Category	Class	Count	Prior
ANL Whitelist			
Upstream Routers	w	36	1
ISU DNS servers			
ESNet			
Google	I	754	0.75
Yahoo Search			
.edu,.gov,.mil	d	1,289	0.5
Emerging Threats	b	2,603	0.25

Prior: ≈ P(Whitelist | Intrusion Response, NetFlow Traffic Seen)

Classifiers vs. Score Estimators

- Classification = Score + Threshold
- Score-based dynamic whitelist approaches
 - Naive approach any destination IP from an AL host
 - ▶ 28,908 collected IP addresses were listed by dynamic blacklisting

 - Naive Bayes Relative score

- Classifiers vs. Score Estimators
 - Classification = Score + Threshold
- Score-based dynamic whitelist approaches
 - Naive approach any destination IP from an AL host
 - 28,908 collected IP addresses were listed by dynamic blacklisting services.
 - Linear Regression Linear function value estimate
 - Naive Bayes Relative score
 - Bayesian networks Probabilistic score

Linear Regression

- Fit a curve to data
- Model: $Y_i = \beta_0 + \beta \mathbf{x}_i + \varepsilon_i$
- Useful for:
 - Estimating fit of a model
 - Predicting values
- Pitfalls
 - Assumes linear model is appropriate
 - Assumes normal distribution
 - Assumes common variance between xi

- Based on Bayes' equation: $P(A|B) = \frac{P(B|A)*P(A)}{P(B)}$
- Bayesian Network: A graphical model of dependencies
- Useful for:
 - Modelling arbitrary distributions
 - Bayes Nets: Returning an actual probability
- Pitfalls:
 - Naive Bayes: Assumes all features are independent

Bayesian Network Model

Naive Bayes Model

- Impact of Flow Directionality (In? Out? Both?)
- Feature Selection
- Score Type
- Bayesian Networks Learned vs. Defined structure

Results: Regression

Comparison of Linear Regression approaches

Results: Linear Regression Models

Out	S =	F+L+D-F*L
In	S =	F+L-P-F*L
	S =	iL + oF + oD - iP + oL - oP -
In + Out		oF*iP-oF*oL+iL*oP-iP*oP-oL*oP-
		iL*oL-oD*oP
In + Out + Block	S =	iF + iL + oF - iP - oL + oD - iF * oF - oF * oL -
		iP*oD-iL*oL+iL*oF

S - Score F - Flows

Legend:

L - Lastseen D - Data Volume

P - Peer Count o - Outbound

i - Inbound

Results: Naive Bayes

In and Outbound Flows (0.945)

In and Out + Blocks (0.945)

Results: Bayesian Networks

In and Outbound Flows (0.969)

In and Out + Blocks (0.970)

Results: Bayesian Network Structures - In/Out Only

25

Results: Bayesian Network Structures - In + Out

Results: Bayesian Network Structures - In + Out + Block

Discussion / Speculation

- Linear Regression and Naive Bayes both have assumptions which do not hold.
- Coupling with post-response estimation may be beneficial.
- Sufficient information to model IPs seen frequently.

Method	Data	AUC
	Out Only	0.953
I R	In Only	0.915
LN	In + Out	0.946
	In + Out + FW	0.948
	Out Only	0.953
NB	In Only	0.942
IND	In + Out	0.945
	In + Out + FW	0.945
	Out Only	0.963
BN	In Only	0.967
DIN	In + Out	0.969
	In + Out + FW	0.970

- Process to define a dynamic whitelist:
 - Define broad categories of resources.
 - Provide rough estimates of "priors".
 - Opening features.
 - Gather data.
 - Apply classifier(s) using tool of choice. (Weka, R, Python, Matlab, etc...)
 - Ompare results with employed blacklists.
- Feasible to model important site resources with minimal effort / maintenance.

Continuing Efforts

- Live "burn-in" (AL Deployment)
- Address with changing behavior
 - Sliding window?
 - Time-based decay?
- Performance tweaking
 - Additional Features / Data Sources
 - Alternative scoring functions
- Generalize to other data types
- Explore other scoring approaches
- Portable tool

Acknowledgements

- Ames Laboratory
- NSM Group
- Argonne National Lab

References

- Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten (2009); The WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue 1.
- R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
- Tobias Sing, Oliver Sander, Niko Beerenwinkel and Thomas Lengauer (2009). ROCR: Visualizing the performance of scoring classifiers.. R package version 1.0-4. http://rocr.bioinf.mpi-sb.mpg.de/
- David A. James and Saikat DebRoy (2008). RMySQL: R interface to the MySQL database. R package version 0.6-1, www.mysgl.com www.omegahat.org/bioconductor.org/packages/release/extra
- Stuart Russell, Peter Norvig (2003). Artificial Intelligence: A Modern Approach. ISBN 0-137903-95-2.